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The one-sided Lévy-stable probability densities and the discrete-stable distributions form a doubly stochastic
Poisson transform pair. This relationship facilitates the formulation of a class of continuous-stable stochastic
processes.

DOI: 10.1103/PhysRevE.77.011109 PACS number�s�: 02.50.Cw, 02.50.Ey, 05.10.Gg

The concept of statistical stability underpins classical sta-
tistical mechanics in general and the behaviors presented by
complex systems in particular. Stability refers to the math-
ematical property whereby sums of identical and stably dis-
tributed random variables are similarly distributed �1�, the
Gaussian random variables being the most familiar example
of these. Other members of the class are characterized by
probability density functions p�x� that have power-law tails,
such that p�x���x�−�1+�� with index in the range 0���2 and
hence the variance and higher moments of these distribu-
tions are infinite. Stability has a wider currency, however,
because of its impact on prescribing the behavior of sums of
random variables of arbitrary distribution. The central limit
theorem of classical statistics and its generalizations �2�
stipulate the limiting distribution for sums of a large number
of random variables, this being the Gaussian when the vari-
ances of the summands all exist and one of the other mem-
bers of the stable class when at least one of the variances is
infinite. The concept of statistical stability can be extended to
encompass discrete random variables too �3,4�. Here the ana-
log of the Gaussian random variable is assumed by Poisson-
distributed random variables, while the power-law distribu-
tions for the random integer n�0 adopt the asymptotic form
P�n��1 /n1+� where the index is now in the range 0��
�1, so that the mean and higher moments of these distribu-
tions do not exist. The equivalent generalization of the dis-
crete version of the central limit theorem �5� can be para-
phrased as follows: the limiting distribution for sums of a
large number of discrete random variables is Poisson when
the means of all the summands exist and one of the other
members of the class when at least one of the means is infi-
nite. The evident similarities between the discrete and
continuous-stable random variables and the attendant gener-
alized limit theorems prompts investigating whether there
exists a more fundamental connection between them. The
first purpose of this paper is to establish precisely the nature
of this interrelationship, which is that the discrete and one-
sided continuous-stable distributions form a Poisson trans-
form pair. Although this relationship has been noted previ-
ously in an abstract context �6�, the conditional relationship
between the scaling constants appearing in the transform
pairs was not recognized. The proof given here identifies
explicitly the dependence of the scaling constants with the
index �, and this association is critical for this paper’s second
aim, to formulate the important generalization from stable-
distributed variables to well-defined continuous processes.

The continuous Lévy-stable distributions are defined

through their characteristic function C�u�, which is the Fou-
rier transform of the probability density function �PDF�

C�u� = �
−�

�

p�x�exp�iux�dx

= exp†− a�u���1 − i� sgn�u���u,���‡,

a � 0, ��� � 1, 0 � � � 2, �1�

where

��u,�� = �tan		�

2

 , � � 1,

−
2

	
ln�u� , � = 1 �

�1,7�. In the above a is a scaling constant. The symmetry of
the distribution is controlled by the parameter �: when �
=0, the distribution is symmetric and defined for all x. By
contrast when ���=1 and the index falls in the range 0��
�1, the distributions are “one sided” on the half-line defined
through sgn�x�=�. The index � describes the power-law be-
havior for large x. When �=2 the distribution is a Gaussian
with variance 2a. The PDF is found by Fourier inversion of
the characteristic function, and apart from a few special cases
�e.g., �7��, closed-form expressions for the distributions can-
not be found.

The discrete stable distributions are defined through the
generating function

Q�s� = �
n=0

�

�1 − s�nP�n� = exp�− As�� , �2�

where 0���1. Here A is the analogous scaling constant
that can be identified with the mean of n when �=1, in which
case the generating function is that for the Poisson distribu-
tion. Only exceptionally can a closed form expression be
found for the distribution �4� but

P�n� =
�− 1�n

n!
 �nQ�s�

�sn 
s=1

can always be used. The Poisson transform describes how a
discrete random variable n with probability distribution P�n�
can be generated by the action of some underlying continu-
ous fluctuation with density p�x�,
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P�n� =
1

n!
�

0

�

xn exp�− x�p�x�dx , �3�

and was introduced as the representation of a doubly stochas-
tic process with reference to the breakdown of looms �8�,
having since found application to the photoelectric detection
of photons �9� among many others �e.g., �10��. The Poisson
transform requires that the continuous random variable is
defined for x�0 and the continuous-stable distributions with
this property are those for which �=1, in which case 0��
�1, and this range of � coincides with that for which the
discrete stable distributions are defined.

Supposing that a discrete distribution has a Poisson trans-
form representation given by Eq. �3�, it follows that the gen-
erating function as defined in Eq. �2� is the Laplace trans-
form of the continuous density p�x� because

Q�s� = �
n=0

�
�1 − s�n

n!
�

0

�

xn exp�− x�p�x�dx

= �
0

�

dxp�x�exp�− sx� = L�p� =
1

2	
�

−�

�

du
C�u�
s + iu

,

�4�

the last expression resulting from writing the density in terms
of its characteristic function and performing the integral over
the x variable. The result �4� is general, but on specializing to
the characteristic function appropriate for the one-sided
stable distributions one obtains

Q�s� =
1

2	
�

0

�

du
exp�− au��

�s + iu��s − iu�


��s − iu�exp�iau� tan		�

2

� + c.c.� ,

which may be evaluated using a complex contour � compris-
ing the positive x axis extending from the origin to the point
X, followed by the arc �1 of a circle connecting X to
X exp�i� and closed by �2, a straight line back to the origin.
Employing the residue theorem and noting that the only sin-
gularity of the integrand occurs where u= is provided that
contour is closed along a ray where 	 /2��	, it follows
that

Q�s� =
1

2	
�2	iRes� exp�− au��

�s + iu��s − iu�


��s − iu�exp�iau� tan		�

2

� + c.c.�

u=is
��

− I1 − I2,

where I1 and I2 are the contributions from the paths �1 and
�2. It is straightforward to show that these contributions van-
ish as X→� in the limit as →	, and the residue can be
evaluated to obtain

Q�s� = exp�− a�is���1 − i tan		�

2

��

= exp�− a exp	 i	�

2

s���1 + tan2		�

2

�1/2


exp	−
i	�

2

�� = exp�− a sec		�

2

s�� ,

which upon comparison with Eq. �2� shows that the one-
sided continuous Lévy-stable distributions and the discrete
stable distributions form a Poisson transform pair with

A = a sec�	�/2� . �5�

It should be stressed that this result is valid only for 0��
�1 and cannot be extended to the case �=1 because the
continuous distribution corresponding to this is defined over
the entire real line rather than positive values alone. More-
over, recall that the discrete distribution with �=1 is the
Poisson, corresponding to p�x� given by a delta function
��x− n̄�.

Figure 1�a� compares the discrete and continuous distri-
butions for when �=1 /2, in which case

P�n� =
2

	1/2n!
An+1/2Kn−1/2�2A�

and

p1/2�x� =
a

2	1/2x3/2 exp	−
a2

4x

 , �6�

where Kn�x� is a modified Bessel function of the second kind
�11�. The discrete distribution is monotonically decreasing
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FIG. 1. Comparison between the continuous- �solid line� and
discrete- �squares� stable distributions with index �=1 /2 and a=1
shown in linear �a� and log-log plots �b�.
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with P�0�=exp�−A�, whose value is shown by the diamond-
shaped character in the figure. By contrast the continuous
distribution has an acclivity in the vicinity of the origin,
where p1/2�0�=0. The logarithmic plot Fig. 1�b� illustrates
the power-law tail of both distributions.

For small values of n and with ��1, the Poisson distri-
bution and the discrete-stable distributions are almost identi-
cal, however: for n�1 a power-law tail in the latter becomes
the distinguishing feature. This is illustrated in Fig. 2�a�
where the two distributions are contrasted for when for a
=1 and �=0.99—the distributions only differ discernibly for
n�100. Thus, as �→1, for values of n�a sec�	� /2� the
discrete-stable distributions behave like a Poisson distribu-
tion with mean a sec�	� /2�, whereas for values of n greater
than this, the power-law tail becomes established. Compar-
ing the discrete-stable distribution and its continuous-stable
counterpart �with a=1,�=0.99,�=1�, the differences be-
tween the distributions are more pronounced. The continuous
distribution becomes more peaked in nature, but it should be
borne in mind that it still has a power-law tail and so is not
localized like the � function it begins to resemble and finally
attains when �=1. It is worthwhile noting that the discrete-
stable distributions can be obtained from a family of Mar-
kovian stochastic processes �4�. When � is close to unity,
these processes have the characteristics of what is ostensibly
a Poisson process but with extreme values deriving from the
power-law tails; these rare events are necessarily part of the
process. Thus the discrete-stable processes can be utilized as
a model for the prediction of rare “outlying” events.

So far, only doubly stochastic stable variables have been
discussed: however, it is also possible to generalize the dou-
bly stochastic approach to the relationship between discrete

and continuous stable processes. Thus the partial differential
equation for a process that has Eq. �2� as its stationary solu-
tion can be Laplace inverted to obtain the Fokker-Planck
equation for p�x , t�. One such process is a population model
consisting of deaths and multiple immigrations:

dP�n,t�
dt

= ���n + 1�P�n + 1,t� − nP�n,t��

− P�n,t��
m=1

�

�m + �
m=1

n

�mP�n − m,t� . �7�

The first two terms on the right-hand side of this equation
correspond to depletions due to single deaths occurring at a
rate �, and the second two represent multiple immigrations
into the population occurring with rates �m=A��2��m
−�� /m!��1−��. The corresponding generating function
equation is �4,12�

�

�t
Q�s,t� = − �s

�

�s
Q�s,t� − ��As�Q�s,t� ,

which has Eq. �2� as its stationary solution and is similar in
form to that obtained for the characteristic function of con-
tinuous Lévy noise �13�, which is defined for fluctuations
occurring for all values of x. Inverse Laplace transformation
gives the integro-differential equation

�

�t
p�x,t� = �

�

�x
�xp�x,t�� +

A��

��1 − ���0

x dx�

�x − x���

�p�x�,t�
�x�

,

�8�

the convolution revealing explicitly the nonlocal and causal-
ity effects influencing the continuous process. Equation �8� is
distinct from those appearing in �14� that were developed to
treat continuous-stable processes for all values of x.

The solution of Eq. �8� is the conditional continuous den-
sity related to the conditional discrete distribution of Eq. �7�
via the doubly stochastic representation �3� and the joint den-
sity can be calculated from this solution in the usual way.
However, note that in order to calculate the joint generating
function for the continuous process directly from an expres-
sion for the joint generating function for the discrete process
requires the elimination from the latter of terms arising
solely from the discrete nature of the variable. For example,
the joint generating function for the discrete stable process
formed by the above death-multiple immigration population
model is �12�

Q�s,s�� = exp„− A�s���1 − ��t��� + �s + �1 − s�s���t����… ,

�9�

where ��t�=exp�−�t�. Comparison with the joint-Poisson
process, whose continuous analog must be a product of two
uncorrelated � functions, demands that the scaling in s re-
quired to achieve the correct dense limit must necessarily
suppress the term involving ss���t�. Indeed, comparisons
with discrete processes whose moments and normalized cor-
relation function �n�0�n�t�� / n̄2 exist �e.g., �15�� reveals that
terms involving ss���t� appearing in the generating function
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FIG. 2. �a� Comparison between the Poisson and discrete-stable
distribution with �=0.99, the power-law tail is evident in the latter.
�b� Comparison between the discrete- and continuous-stable distri-
butions with �=0.99. Both have power-law tails with the same in-
dex which is not discernible on the graphs.
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are responsible for contributions of order n̄−1 in the normal-
ized correlation function. These dependences are an intrinsic
feature of discrete processes that are not present in their con-
tinuous analogs. From Eq. �5�, as �→1, A→ n̄→�, and so
the O�n̄−1� terms vanish. The scaling of Eq. �9� that achieves
this suppression for all allowable values of � is s
→ �a /A�1/� s which upon letting A→� gives

Q�s,s�� = exp„− a�s���1 − ��t��� + �s + s���t����… . �10�

Equation �10� is therefore the double-Laplace transform of
the one-sided continuous-stable process. The same result ob-
tains when considering the birth–death–multiple-
immigration process �12� which has a different generating
function to that given by Eq. �9�. Indeed result �10� is a valid
joint-generating function corresponding to a stable single-
interval variable for any function of � �provided that 0
���t��1 and decreases away from the origin� and can be
Laplace inverted to obtain the general joint-stable density:

p�x1,x2� =
1

a2/��1 − ���1/� p�	 x1

a1/�
p�	 x2 − x1�

a1/��1 − ���1/�
H�x2

− x1�� ,

where L−1�exp�−s���= p��x� is the marginal one-sided Lévy
density function and H�z� is the Heaviside step function.

This paper has shown that the class of discrete stable vari-
ables may be generated from a subset of the continuous
Lévy-stable variables through a doubly stochastic Poisson
transform. This result has enabled the asymptotic behavior
near the Poisson limit �or, in the case of a continuous pro-
cess, near the �-function distribution limit� to be elucidated,
establishing the role and importance of outlying events and
extreme behavior. The doubly stochastic representation has
been extended to stable processes, and results for joint gen-
erating functions and joint-stable densities have been de-
rived. This facilitates the analysis and simulation of both
discrete- and continuous-stable processes that are important
in the modeling of many natural phenomena that have ex-
tremal and/or fractal characteristics.
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